A 3D Finite-Difference BiCG Iterative Solver with the Fourier-Jacobi Preconditioner for the Anisotropic EIT/EEG Forward Problem
نویسندگان
چکیده
منابع مشابه
A 3D Finite-Difference BiCG Iterative Solver with the Fourier-Jacobi Preconditioner for the Anisotropic EIT/EEG Forward Problem
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving th...
متن کاملFinite Difference anisotropic formulations for the EEG forward problem
In this paper we describe a new finite-difference method (FDM) EEG forward problem formulation which accounts for anisotropy of the various head tissues in the volume conductor model of the head. Our proposal, being based on FDM, derives the head model directly from patient’s specific clinical images. We present here the numerical FD formulation and the comparison of the proposed method with a ...
متن کاملA 3D Vector-Additive Iterative Solver for the Anisotropic Inhomogeneous Poisson Equation in the Forward EEG problem
We describe a novel 3D finite difference method for solving the anisotropic inhomogeneous Poisson equation based on a multi-component additive implicit method with a 13-point stencil. The serial performance is found to be comparable to the most efficient solvers from the family of preconditioned conjugate gradient (PCG) algorithms. The proposed multicomponent additive algorithm is unconditional...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولApplication of iterative Jacobi method for an anisotropic diusion in image processing
Image restoration has been an active research area. Dierent formulations are eective in high qualityrecovery. Partial Dierential Equations (PDEs) have become an important tool in image processingand analysis. One of the earliest models based on PDEs is Perona-Malik model that is a kindof anisotropic diusion (ANDI) lter. Anisotropic diusion lter has become a valuable tool indierent elds of image...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational and Mathematical Methods in Medicine
سال: 2014
ISSN: 1748-670X,1748-6718
DOI: 10.1155/2014/426902